skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Varni, Anthony_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A new class of conjugated macrocycle, the cyclo[4]thiophene[4]furan hexyl ester (C4TE4FE), is reported. This cycle consists of alternating α‐linked thiophene‐3‐ester and furan‐3‐ester repeat units, and was prepared in a single step using Suzuki–Miyaura cross‐coupling of a 2‐(thiophen‐2‐yl)furan monomer. The ester side groups help promote asynconformation of the heterocycles, which enables formation of the macrocycle. Cyclic voltammetry studies revealed that C4TE4FE could undergo multiple oxidations, so treatment with SbCl5resulted in formation of the [C4TE4FE]2+dication. Computational work, paired with1H NMR spectroscopy of the dication, revealed that the cycle becomes globally aromatic upon 2eoxidation, as the annulene pathway along the outer ring becomes Hückel aromatic. The change in ring current for the cycle upon oxidation was clear from1H NMR spectroscopy, as the protons of the thiophene and furan rings shifted downfield by nearly 6 ppm. This work highlights the potential of sequence control in furan‐based macrocycles to tune electronic properties. 
    more » « less